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J. Phys. A: Math. Gen., Vol. 11, No. 9, 1978. Printed in Great Britain. 

Multiplicity distributions of created bosons: the method of 
combinants T 

S K Kauffmann and M Gyulassy 
Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, 
Berkeley, California 94720, USA 

Received 3 April 1978 

Abstract. The number of bosons that are created by an excitation process, in a system 
which initially has none, is a random variable having a discrete probability distribution, 
defined on the non-negative integers, which satisfies P(O)>O. The logarithm of the 
resulting probability generating function is therefore analytic at the origin, and the series 
expansion coefficients thereby generated can each be expressed as a finite combination of 
ratios of the P ( n ) ,  giving them an interestingly close kinship to experimental data. These 
‘combinants’ are additive for sums of boson multiplicity random variables which are 
independent, and they all vanish except for the first-order one (which has the value of the 
mean) in the important Poisson case. The combinants are readily calculated in a number of 
theoretical models for created boson multiplicities, including the thermal model, some of 
the related chaotic radiation models, and in some models described by master rate 
equations. The resulting boson multiplicity distributions are then described by the very 
general convoluted multiple Poisson distribution, which is expressed directly in terms of 
the combinants. Combinants thus provide a neat theoretical tool for dealing with many 
models of boson multiplicity distributions, some of which had previously seemed intract- 
able. It is further shown that cumulants have the same formal relation to combinants as 
moments have to probabilities. Combinants are a probabilistic tool which szems uniquely 
well suited to both the experimental and theoretical study of multiplicity distributions of 
created bosons. 

1. Introduction and basic development 

Collisions or other excitation processes often create bosons in systems where none 
were present initially. We call P ( n ) ,  the probability that n bosons were produced by the 
process, the created boson multiplicity distribution. The domain of P ( n )  is the non- 
negative integers (n  = 0, 1 , 2 ,  . . .), and it seems reasonable to postulate, bearing in 
mind any reasonable quantum description of boson creation (Bjorken and Drell 
1965), that there is a non-zero probability to produce no bosons at all, i.e. 

P(O)>O. ( 1 . 1 )  
We have, in addition, the usual probability distribution conditions 

P ( n ) s O ,  n = 1 , 2 ,  . . 
and 

00 1 P ( n ) = l .  
n = O  

( 1 . 2 a )  

(1 .2b )  

t This work was supported by Nuclear Physics, Nuclear Science Division, of the US Department of Energy. 
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1716 S K Kauffmann and M Gyulassy 

A very useful tool for studying P(n)  is the generating function 
m 

F(A)= 1 A"P(n). 
n = O  

Simple models of boson production often predict the Poisson multiplicity distribution 
(Bjorken and Drell 1965) 

(ii)" --A 
P ( n ) = T e  

n. 

which has the simple generating function 

F(A)=exp[(A -l)fi]. 

Indeed, it is useful to try to characterise the general P ( n )  in terms of its deviations 
from the Poisson. Traditionally, this is done by considering deviations which the 
moments of P(n)  have from special properties possessed by Poisson moments 
(Burington and May 1953). On a different tack, we note that the natural logarithm of 
the Poisson generating function, equation (1 3, is a simple first degree polynomial. 
Non-zero second- and higher-order coefficients of the power series expansion, in A, of 
the natural logarithm of the generating function, spell out the deviations of a general 
created boson multiplicity distribution from the Poisson. We write this expansioii as 
follows 

W 

ln(F(A)) = ln(F(O))+ 1 C ( k ) A  ( 1 . 6 ~ )  
k = l  

m 

= In(P(O)) + 1 ~ ( k  )A '. (1.6b) 

It is seen that our condition (1.1) is necessary for this expansion to exist. We note, 

k = l  

from equations (1.26) and (1.3) that F(1)=  1. Thus we arrive at 
00 

ln(P(0)) = - C C ( k )  
k = l  

which implies that 
W 

In(F(A)) = 1 C ( k ) ( A  - 1) 
k = l  

or 

F(A)  = exp( 2 C(k)(A - 1)). 
k = l  

( 1 . 8 ~ )  

(1.8b) 

The expansion coefficients C(1), C(2),  . . . thus completely characterise P(n). For 
a Poisson, C(1) is the mean, while C(2), C(3) ,  . . . all vanish. Let us try to calculate 
C(1), C(2), . . . in the general case. We proceed by the method of inserting one power 
series into another 

ln(F(A))=ln(P(O))+ln(l+ n = l  An*)) 
P(0) 

= In(P(O))+ 1 
j- 1 

( 1 . 9 ~ )  

(1.9b) 
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From equations (1.66) and (1.96) we may read off 

(1.10a) 

(1. 106) 

(1.1Oc) 

etc. 
We note that each C ( k )  is expressible in terms of just the first k probability ratios 

(P(l)/P(O)), (P(2)/P(O)), . . . , (P(k ) /P(O) ) .  This stands in stark contrast to ‘ordinary’ 
probability coefficients such as moments and cumulants, each of which involves every 
single one of the infinite number of P ( n )  in its definition. However, note again the 
necessity of condition (1.1) to the existence of the C ( k ) .  

Among the traditional probability coefficients, the cumulants, the first two of 
which are the mean and the variance, occupy a special role. This is partly because any 
random variable which is composed of a sum of independent random variables, has for 
its cumulants just the sum of the respective cumulants of its components (Burington 
and May 1953). This coefficient ‘additivity property’ is, however, shared by the C ( k ) .  

Given random variables N I ,  N2, . . . , where Ni represents the number of bosons of 
the ith type (e.g. having momentum p i )  which are independently created by a certain 
process, we wish to consider the distribution of N, a sum random variable, represent- 
ing the total number of bosons of a certain class which are created, 

N = C  Ni. (1.11) 
i 

Given that each Ni is independently distributed according to Pi(n), which has 
generating function Fi(A),  it is easily shown that N is distributed according to P(n) ,  
whose generating function F(A)  is just the product of the Fi(A), 

(1.12) 
i 

Thus, if we write each generating function F , ( A )  in terms of its coefficients 
Ci(k), k = 1 , 2 , .  . . , as in equation (1.86), we see from equation (1.12) that the 
coefficients C ( k )  of N satisfy the ‘additivity property’ 

C ( k ) = C  c i ( k ) ,  k = 1 , 2 , .  . . . (1.13) 

The C ( k )  share this important property with the cumulants, but cumulants are 
finitely expressible in terms of the moments, each of which involves an infinite 
‘cumulative’ sum over all the P ( n ) .  The C ( k ) ,  however, are expressible directly as a 
finite combination of ratios of the P ( n ) .  In view of the similarities and distinctions, we 
feel it is appropriate to call the C ( k )  ‘combinants’. 

For the study of created boson multiplicity distribution in particular, combinants 
appear to be a more appropriate tool than the traditional (and more widely applicable) 
moment based probability coefficients. This is because : (1) they trivially exhibit the 
deviations from the Poisson; (2) they possess the elegant and very useful additivity 

i 
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property; and ( 3 )  the first k combinants follow immediately from the first k + l  
unnormalised probabilities-precisely the nature of created boson multiplicity data 
provided by experiment. 

For practical applications, we need the general formula for the C(k) ,  whose 
derivation was begun in equation (1.9). Continuing with this matter here, we apply the 
multinomial expansion to the jth power of the innermost sum in equation (1.9b), and 
then re-arrange the result in ascending powers of A : 

( 1 . 1 4 ~ )  

(1.14d) 

Here S is the Kronecker delta and 8 is the Heaviside unit step function, but specified 
to have value unity at zero. The general formula for C(k), then, is 

P(q)  k WPI 
C ( k ) = -  . . .  1 . . .  ( - l +  nr)![ q = l  fi L(--)n']S(k,  n,! P(0) r = l  mr), 

n l = 0  n,=O nk=O r = l  

k = 1 , 2 , .  . . ,  (1.15) 

where [ k / p ]  stands for the integer part of the quotient ( k l p ) .  
In order to program equation (1.15) on a computer, one needs an algorithm which 

sequentially generates the full set of non-negative integer k-tuples ( n l ,  n 2 , .  . . , nk) 
which satisfy 

k 
rn, = k .  

r = l  
(1.16) 

-4 fairly simple such algorithm is described in the appendix. We emphasise again that 
computation of the kth combinant only requires knowledge of all the unnormalised 
probabilities for having produced q bosons, where q s k .  We thus believe that 
combinant analysis will be a worthwhile addition to the methods of experimental data 
analysis. 

In the next section we shall see that certain theoretical models for created boson 
multiplicity distributions are most naturally expressed in terms of the combinants- 
due in considerable part to the additivity property. 

2. The convoluted multiple Poisson and some theoretical applications 

In this section we shall see that a number of theoretical models for created boson 
multiplicity distributions yield relatively simple expressions for the combinants. It is of 
interest, then, to have a general formula for the P ( n )  in terms of the C ( k ) .  Equation 
(1.8b) gives F(A)  as an exponentiated series in terms of the C ( k ) .  We may apply our 
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technique of inserting one series into another, re-expressing the innermost series to a 
power by using the multinomial expansion, and re-ordering the result in ascending 
powers of A ,  to find the P ( n ) .  First we note that since from equation (1.7) 

it follows, from equations (1.3), (1.8b), and the techniques illustrated in equation 
(1.14), that 

n=O f A'$$=exp( k = l  f C(k)Ak) 

= j = O ] .  f +( k = l  f C(k)Ak)j 

r = l  

(2 .2a)  

(2.26) 

(2.2c) 

(2.2d) 

(2.2e) 

Thus, from equation (2.2), for n = 1 , 2 , 3 ,  , , , , 
n 

P(n)=P(O)  . . .  [n'P1 , . .  ( f i  -)6(n, f rnr) (2.3) 
nl=0 n,=O n,=O k = l  nk! r =  1 

while P(0) is given by equation (2.1). Thus, we have expressed an arbitrary created 
boson multiplicity distribution directly in terms of its combinants. 

A very suggestive way of writing this result for P ( n )  is 

which is a convoluted form of the multiple Poisson distribution (Gyulassy and 
Kauffmann 1978) with the combinants, C(k) ,  as the 'means'. This is certainly a most 
intriguing way of viewing equation (2.4), which is, after all, the most general possible 
form of the created boson multiplicity distribution. A bit of caution regarding such a 
viewpoint is in order, however. First, unlike true means of a multiple Poisson, some 
C ( k )  are permitted to assume negative values, at least for k 2 2  (see equations (1.10) 
and (1.15)). Second, the nature of the convolution is rather unorthodox-an orthodox 
convolution would make P ( n )  itself a Poisson, which is definitely not the case unless 
all the C ( k )  for k 3 2 vanish! 

With the very general convoluted multiple Poisson distribution in mind, let us 
consider some theoretical models of created boson multiplicity distributions. If the 
bosons are created by the action of a classical source current, it is well known that they 
will be independently Poisson distributed (only C(1) = ti non-vanishing) in each mode 
(Bjorken and Drell 1965). It is the simplest consequence of the additivity property 
that the multiplicity distribution of such bosons over any range of modes will also be 
Poisson distributed, with the mean number being the sum of the means in each mode. 
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A common theme in many theoretical models is that the bosons are created with 
independent distributions in each mode. The multiplicity distribution over a range of 
modes follows, of course, from its combinants, and these, by additivity, are just the 
sums of the respective combinants from each mode. For example, a large random 
ensemble of classical sources sufficiently dispersed over space and time tends, in the 
sense of a limiting average over the boson Poisson distributions produced by each 
source ensemble member, to create bosons having independent geometric (Bose- 
Einstein) distributions in each mode (Klauder and Sudarshan 1968). Suppose the ith 
mode is Bose-Einstein distributed with mean Ai. Then 

(ai )" 
(1 + iii)"+" P j ( n )  = 

which has the generating function 

=txp[  k - 1  'f L(L)k(Ak-l)]. k 1 + A j  

Thus the combinants for the ith mode (Bose-Einstein) distribution are 

1 ii. k 
Cj(k)=-(-) k 1+iij , k =  1 , 2 , .  . , , 

( 2 . 6 ~ )  

(2.66) 

( 2 . 6 ~ )  

Therefore the multiplicity distribution over a range of modes is just the convoluted 
multiple Poisson (equatioris (2.11, (2.3), and (2.4)) whose combinants are 

To illustrate this result, consider the special example of identical scalar bosons created 
in thermal equilibrium at temperature T within a box of volume V. Statistical 
mechanics yields independent Bose-Einstein distributions of such bosons in each 
mode, with means (Klauder and Sudarshan 1968) 

(2.9) 
ffi={eXp[(lpi12C2+p 2 C 4 ) 1/2 / k ~ T ] - l } - l  

where kB is the Boltzmann constant and p is the boson mass. The total number of 
bosons created thus within the box is distributed according to a convoluted multiple 
Poisson whose combinants, according to equation (2.8) and (2.9), are 

( 2 . 1 0 ~ )  2 4 1/2 1 
C ( k ) = - C  eXp[-k(lpi/2C2+p c ) /kBT] 

k i  

- -- 1 v  - 1 d3p exp[-k()p12c2+p 2 c 4 ) 1 / 2  / k ~ T l  

=-- ( ) ( ~ ~ c ? ) K ~ ( ~ ) ,  - k = 1 , 2 , .  . . , 
k ( 2 ~ h ) ~ .  

k 2v2h3 
1 Vk3C3 

(2.106) 

(2.10c) 
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where K z  is the modified Bessel function (Gyulassy and Kauffmann 1978). It is to be 
noted that in the absence of the combinant and convoluted multiple Poisson concepts, 
the thermal boson total multiplicity distribution seems virtually intractable. 

Within the context of these ‘independent Bose-Einstein per mode’ models, often 
called chaotic radiation models, it is interesting to remark on the physical inter- 
pretation of the combinants. First, the quantity kCi(k) is, from equations (2.7) and 
(2.5), just the probability that the occupation number of the ith mode is greater than 
or equal to k. Thus, the quantity kC(k) is, from equation (2.8), the mean number of 
modes, in the range being considered, which have occupation number greater than or 
equal to k (Gyulassy and Kauffmann 1978). In the thermal model, one would, then, 
expect C(k)  to fall exponentially with k for large k, which is indeed the case, as can be 
seen from equation (2 .10~) .  (Note, however, than an exponential fall-off of the 
combinants does not occur in such a thermal model for the total number of bosons if 
they are massless, because massless bosons can populate a great many sufficiently 
low-lying modes in any numbers at little cost in energy.) It is worthwhile to point out, 
with respect to the class of ‘independent Bose-Einstein per mode’ models, that if 
every mode in the range under consideration is sparsely populated (all Ai C l ) ,  we can 
reasonably expect C(k)<< C(1) for all k b 2, and our convoluted multiple Poisson 
distribution over the range of modes in question to be fairly well approximated by an 
ordinary Poisson (Hagedorn 1973). 

Let us now turn our attention to quite a different class of models for created boson 
multiplicity distributions. Instead of postulating the distributions in each mode on the 
basis of approximate quantum and statistical notions, one simply assumes that there 
exist time-dependent total rates (over the whole desired range of modes) for certain 
types of instantaneous boson emission and absorption, which can be manipulated 
according to classical probabilistic precepts (Malfliet and Karant 1975, Gyulassy and 
Kauffmann 1978). This sort of crude procedure typically results in probability trans- 
port or master rate equations. Here we shall assume that y: ( t )  is the time-dependent 
rate for the instantaneous emission of a group of k bosons (e.g. from the decay of a 
k-boson resonance), while y - ( t )  is the time-dependent rate for instantaneous single 
boson absorption. Our created boson multiplicity distribution is assumed to vary over 
an infinitesimal time according to the dictates of classical probability notions (Gyu- 
lassy and Kauffmann 1978): 

a3 

P(n, t +d t )=  (n + l)y-(t) dtP(n + 1, t )+ 1 y: ( t )  dtP(n - k, t )  
k=l 

m 
+P(n, t)(  1 - n y - ( t )  dt - y: ( t )  dt) 

k=l 

or 

(2.11a) 

m -- dP(n’ ‘I- y-(r)[(n + l )P(n  + 1, t ) - n P ( n ,  r ) ] +  1 y i ( t ) (P(n  - k, r ) -P(n ,  t)) .  (2.11b) 
dt k=l 

It is understood in equation (2.1 1) that P(n, t )  vanishes identically for n C 0. We have 
the normalisation condition 

m c P ( n , t ) = l  
n = O  

(2.12a) 
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and the condition that no bosons are initially present (we consider only created boson 
multiplicity distributions) 

P(n,  t = 0 )  = S,O. (2 .12b)  

The master rate equation (2.1 1 )  does have the advantage over previously discussed 
models that it makes an attempt to include the effect of boson emission in dynamically 
correlated groups. We shall see that this phenomenon alone forces the presence of 
higher combinants in the solution. 

We introduce the time-dependent generating function 
m 

F(A, t ) =  AnP(n, t )  
n = O  

(2.13) 

which satisfies the boundary condition F(A = 1 ,  t ) =  1 from equation ( 2 . 1 2 ~ )  and the 
initial condition F(A, t = 0)= 1 from equation (2.12b).  In terms of F(A, t ) ,  equation 
(2.1 1 b )  becomes 

aF(A t )  -= aF(h' (l-A)y-(t)*+ 1 y l ( t ) ( A k  -1)F(A, t ) .  
at k = l  

(2.14) 

Now we make a convoluted multiple Poisson ansatz which satisfies the boundary and 
initial conditions 

m 

F(A, t )  = exp( 1 C(k, t ) ( A  - 1 ) )  
k = l  

(2.15) 

where C(k, t = 0)= 0,  k = 1 , 2 ,  . . . . This results in the coupled system of equations 

fork  = 1 , 2 , .  , , . (2.16) -- f ) -  y : ( t ) - y - ( t ) [ k C ( k ,  t ) - ( k  + 1)C(k  + 1 ,  t ) ]  
dt 

We may immediately note that if y: ( t )=  0 for all 4 2 k, then C(q, t )  must vanish as 
well for all q 2 k. So the number of combinants in the solution does not exceed the 
largest number of bosons which are instantaneously emitted as a group (dynamically 
correlated). In particular, if the bosons are all emitted singly (dynamically uncor- 
related), this model yields an ordinary Poisson multiplicity distribution, although with 
a mean varying in time according to the equation 

(2 .17a)  

and satisfying the initial condition 

i i ( t = O ) = O .  (2 .17b)  

Provided that y: ( t )  and y - ( t )  approach appropriate limits at large times, we may 
solve for the equilibrium combinants 

(2.18) 

Or course, if only the instantaneous single boson emission rate persists at large times, 
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the equilibrium distribution is an ordinary Poisson with mean 

- Y : ( + a )  
Y -(+a>’ 

n = -  (2.19) 

In the more general case that the instantaneous rate for emitting a group of k bosons 
persists at large times, its ratio to the single boson absorption rate at large times is 
given by a simple function of the equilibrium combinants: 

D ( k ) = [ k C ( k , t = + a ) - ( k + l ) C ( k + l ,  t = + a ) ]  (2.20a) 

(2.20b) 

If we return to the ‘independent Bose-Einstein per mode’ class of models, we will 
note that for these, D(k)= [ k C ( k ) -  ( k  + 1)C(k + l ) ]  is just the mean number of 
modes, in the range of interest, which have occupation number k. So, in both of these 
models, D(k) ,  a simple function of C ( k )  and C(k + l ) ,  provides an indication of the 
degree to which the bosons are correlated into groups of k.  It is tempting to assign 
D ( k )  the role of indicator for k-fold boson correlations in the general instance (a 
negative value for D ( k )  would indicate a k-fold anticorrelation). The validity of such 
an interpretation of D ( k )  in a given situation seems to be related, however, to the 
applicability of classical probability notions to that situation. An especially severe 
counter example is provided by the ‘coherent state’ Poisson distribution of bosons 
produced by a single classical source current-here there can be large ‘correlated’ 
populations per mode, as in bosons from a laser, but still with a Poisson distribution, 
which has all C ( k )  and D ( k )  vanishing for k 2 2. 

We have discussed some models of created boson multiplicity distributions with 
the aim of illustrating the natural applicability and power of combinants in a variety of 
theoretical approaches. This, together with the natural relation of combinants to the 
finite set of multiplicity frequencies which make up experimental data, should make 
combinant analysis a standard tool for both theoretical and experimental study of 
most created boson multiplicity distributions. 

Since combinants thus have an important role in the study of created boson 
multiplicity distributions, we present, in the next section, formulae for the traditional, 
moment based, probability coefficients of the closely related general convoluted 
multiple Poisson. 

3. Moments and related probability coefficients of the convoluted multiple Poisson 

The convoluted multiple Poisson is the most general form of a created boson multi- 
plicity distribution, so it is worthwhile, for completeness, to display its moments and 
related ‘ordinary’ probability coefficients. The formulae thus developed relate these 
traditional, moment based, coefficients directly to the combinants. 

To obtain the moments of the convoluted multiple Poisson, we note the standard 
relation between the generating function F(A ) and the moment generating function 

( 3 . 1 ~ )  

= F(e“). (3 .16)  
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Now we obtain F(e") for the general convoluted multiple Poisson from equation 
(1.8b) and then proceed to use our standard techniques: insertion of one series into 
another, use of the multinomial expansion, and re-arrangement into ascending powers 
of a in order to 'pick off' the (e"): 

( 3 . 2 ~ )  

(3.26) 

( 3 . 2 ~ )  

(3 .2d)  

(3 .2e)  

(3 .3)  

For the factorial moments, it is possible to proceed in much the same fashion. We 
write down the relation between the factorial moment generating function and the 
generating function: 

(3 .4a)  

= F(1+ t ) .  (3 .4b)  

We now proceed in strict analogy with the steps of equation (3.2).  Indeed, most of the 
steps are suficiently similar that we leave them out: 

= exp( 2 C(k)[(l + t)k - l)]) 
k = l  

(3 .5a)  

( 3 3 )  

(3.5c)  
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The result for the mth factorial moment is 

m = 1 , 2 , .  . . . (3.6) 

We turn now to the cumulants. The relation between the generating function and 
the cumulant generating function is (Burington and May 1953) 

= In(F(ea)). 

We proceed as in the first few steps of equation (3.2) 

(3.7a) 

(3.7b) 

(3.86) 

We now have a simple and suggestive result for the jth cumulant 

We work out the factorial cumulants in an analogous fashion. We write down the 
relation between the generating function and the factorial cumulant generating 
function (Burington and May 1953): 

(3.10a) 

= ln(F(1 + t)) .  (3.10b) 

We proceed as in the first few steps of equation (3.5) 

Again, the result for the jth factorial cumulant is elegant 

(3.11a) 

(3.1 1 b) 

(3.12) 

The cumulants (both ordinary and factorial) have exactly the same formal relation 
to the combinants as the moments (ordinary and factorial, respectively) have to the 
probabilities. (Of course, the combinants, some of which may be negative, are not 
probabilities.) The moments do not have a simple representation in terms of the 
combinants, but this is just a consequence of the fact that the moments bear a 
complicated relationship to the cumulants. 
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Among the ‘ordinary’ probability coefficients, the cumulants are the most closely 
related to the combinants, but it seems fair to assert that between the two, the 
combinants are the more elementary. 

Appendix 

Many of the finite sums associated with combinants, including the fundamental 
relation of equation ( 1 . 1 5 ) ,  can be readily programmed on a computer only with the 
aid of an algorithm which sequentially generates the full set of non-negative integer 
k-tuples ( n l ,  n2, . . . , nk) which satisfy 

k 
1 rn, = k. (‘4.1) 

r = l  

Each such k-tuple generally corresponds to a single term of the sum, and it may be 
readily employed to generate this term as a product of factors. After accumulating the 
term, the process is to be repeated with the ‘next’ k-tuple. We shall present the steps 
of a scheme which sequentially generates the k-tuples in a fixed order (calendar 
ordering), beginning with (0, 0, . . . , 0, l ) ,  and terminating with (k, 0, 0, . . . , 0). 

We assume that we are giuen the integer variable k having some positive integer 
value, and we work with the integer array ( n l ,  n2 ,  . . . , nk, . , . ) of dimension greater 
than or equal to k, the integer ‘pointer’ variable r, and the integer ‘remainder’ variable 
j .  One underlying theme of the approach is that, at every stage, all array elements to 
the ‘left’ of the ‘pointer’ are zero. Another, is that 

k 
k -  1 r n , = j a O ,  

r = l  

and the scheme proceeds to reduce j to zero through appropriate changes of array 
elements indicated by the ‘pointer’, which itself is varied in a systematic, incremental 
way. The detailed steps follow. 

1 .  
2 .  
3 .  
4 .  
5 .  
6 .  
7 .  
8 .  
9. 

10. 
1 1 .  
12. 
13.  
14.  
15.  
16. 
17. 

Set n, to 0 for r = 1 , 2 , .  . . 
Set r to k. 
Set n, to 1 .  
Set j to 0. 
Go to step 18. 
If r 3 2 ,  go to step 12. 
Set j to n,. 
Set n, to 0. 
Set r to r + l .  
If r > k, go to step 20. 
If n, = 0, go to step 9. 
Set n, to n , - 1 .  
Set j to j + r .  
Set r to r - 1 .  
Set n, to [ i l r ] .  
Set j to j mod r. 
If j >O,  go to step 14. 

I k. 
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18. 

19. Go to step 6. 
20. 

Make use of the current k-tuple ( n l ,  n2,. . . , nk), but leave it unaltered. 
Also, do not change the values of k ,  r, or j .  

Task completed. All the k-tuples have been generated, and at this point, n, = 0 
for r =  1 , 2 , .  . . , k and r =  k + l .  
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